Monday, July 26, 2010

OSCON 2010

I thoroughly enjoyed the OSCON cloud summit and the talk that I gave at OSCON - the audiences were fantastic and the organisation was superb (huge thanks to Edd, Allison and the O'Reilly crew for making this happen).

I'm really proud to have played my small part in this event as the MC for day, along with John Willis.

I haven't yet talked a great deal on my research, but the keynote at OSCON gives a taste of it - so I thought I'd link to it here. Those who know me, also know that this had been a hobby horse of mine over the last decade. It's finally good to spend some focused time on it though of course these ideas are far from new.

A couple of final notes :-

  • Utility services are just a domain within the commodity phase of an activity's evolution. There are constraints which will prevent a commodity being provided through services. I sometimes plot on the graph a wider "services" stage, however for the sake of simplicity I've left this out.
  • The stages of lifecycle are approximate only i.e. this is where products appear, this is where utility services generally appear etc.
  • Multiple activities can be bundled into a single product. For example the iPhone is a combination of different activities from personal communication to digital recorder to web surfing to time keeper to ... the list is quite long. These activities are all evolving and being implemented by others, which forces Apple to focus on two areas :- the bundling of new innovative activities into the iPhone and application innovation through the App Store. The former is expensive and risky. The later requires development of a strong ecosystem, ideally with users being allowed to create and distribute their own applications. The manner in which Apple manages this is less than ideal and they now face severe disruption from Android. As there is also little exploitation of the wider manufacturers' ecosystem, Apple has cornered itself into creating highly costly & risky innovations with weak leveraging. IMHO, they are in trouble and this should become painfully clear in the next five years unless they change.
  • The ILC model is generally applicable. I picked examples from cloud providers but equally I could have discussed Canonical with Ubuntu. Canonical ruthlessly commoditises activities to provide a stable core and I'd strongly argue that Rackspace & Canonical point to the future direction of IT.
  • Open source is the natural end state for any activity described by software which is ubiquitous and well defined. This doesn't mean that open source can't be used earlier, of course it can and there are numerous tactical advantages of doing so, along with benefits such as increased collaboration. However, what I am saying is that by the time an activity has reached the commodity phase then only open source makes sense. Those who have been questioning whether "cloud is the death of open source" have a poor understanding as to what is actually happening.
  • Open core is in general a tactical anomaly. On the one hand, if successful, it will cause widespread distribution (driving an activity towards more of a commodity) and yet it attempts to generate revenue through proprietary elements which is against the natural state that open core is forcing activities towards. A number of companies have used this approach successfully and have even been bought for huge sums by large companies. However, it still remains a tactical anomaly which attempts to achieve both the benefits of open and closed by being both.
  • The S-Curves I use are not time based. If you follow the evolution of an activity through specific phases of its lifecycle and plot adoption against time, you will derive a set of non-uniform S-Curves for Roger's diffusion of innovation. It's important to realise that the accelerators I mentioned (open source, participation, network effects) along with others I didn't mention (communication mechanisms, co-evolution etc) alter the speed at which an activity evolves. Whilst, this doesn't impact the S-Curves I use, it does compact Roger's curves of more recent innovations when compared to earlier diffusions.
  • The speed at which an activity moves across the profile graph (i.e. through its lifecycle) depends upon the activity.
  • None of these ideas are new. The nearest to new is company profile which I've been refining in the last year from earlier work (between '04-'07) and this refinement is simply a formalisation of already existing concepts. If you watched the video and thought, "that's new", then my only advice is be concerned.
  • On the question of science, the models presented (S-Curve, Profile) are part of a general hypothesis on the evolution of business activities. Whilst data exists, there is neither the volume of evidence nor independent observation to validate beyond this. Furthermore, whilst the models show some usefulness and can be falsified, they are not predictive (and hence this cannot be considered scientific but remains firmly within the field of philosophy). The reason for this is that in order to generate the graphs and avoid asymptotic behaviour, a definition of commodity is required. The consequence of such is that an activity can only be plotted in terms of relative historical position i.e. after it has become a commodity. This means, all positions of activities which have not become a commodity are uncertain (as per one of the axis of the graph) and therefore approximations. The models do not create a crystal ball and the future is one information barrier we can't get past. Even though the new pattens of organisation are testable it should always be remembered that fitness does not guarantee survival.

That's enough for now, I'll expand the topic sometime later.